DESIGN AND SYNTHESIS OF NOVEL LIGANDS FOR THE 5-HT3 AND THE 5-HT4 RECEPTOR

E.Blum, K.H.Buchheit, H.H.Buescher, R.Gamse, E.Kloeppner, H.Meigel, C.Papageorgiou, R.Waelchli and L.Revesz*

Preclinical Research, Sandoz Pharma AG, CH-4002 Basle

(Received 7 February 1992)

<u>Abstract:</u> A novel highly potent 5-HT₃ antagonist and Tropisetron analogue (1) is described with an increased efficacy to inhibit cisplatin induced emesis in ferrets. Four novel structural classes of gastroprokinetic benzamide bioisosteres (8-11) are presented. 5-HT derivatives 12-14 are described as ligands of the recently discovered 5-HT₄ receptor.

5-HT receptors have been recently subdivided into three major categories designated "5-HT₁-like", 5-HT₂ and 5-HT₃ [1], but there is also evidence for another type, the 5-HT₄ receptor [2-5]. It is perhaps in the 5-HT₃ receptor area, where the most spectacular developments have occured; a number of potent antagonists are currently being evaluated in clinical trials as antiemetics, antipsychotics and anxiolytic agents. Most 5-HT₃ receptor antagonists can be regarded as falling into three classes, differing in their pharmacological profile. In the first are selective 5-HT₃ antagonists such as MDL 72222 [6], Ondansetron [7] and Granisetron [8]. In the second are most gastrointestinal prokinetic benzamides, e.g. Cisapride, Renzapride, Metoclopramide and Zacopride [3]. These compounds are 5-HT₃ antagonists, but in addition are agonists at the 5-HT₄ receptor, resulting in a potent stimulation of the gastrointestinal motility [4]. The third class of 5-HT₃ antagonists is represented by Tropisetron (Navoban^R, ICS 205-930)[17], which has non-competitive 5-HT₄ antagonistic effects at high doses [2].

Our design of novel, selective 5-HT₃ antagonists is based on the structure of Tropisetron, where replacement of the tropine residue by scopine led to $\underline{1}$ (SDZ 214-322;[9]), a highly potent 5-HT₃ antagonist (Table I) with a competitive and weak 5-HT₄ antagonistic profile (Table II). Perhaps due to the reduced basicity of its nitrogen atom ($\underline{1}$: pK_a=6.64; Tropisetron: pK_a=8.40 in aqueous solution), $\underline{1}$ was 100 times more potent than Tropisetron in inhibiting cisplatin-induced emesis in ferrets: 0.01 mg/kg i.V. completely protected all animals. $\underline{1}$ inhibited the Bezold-Jarisch reflex in rats with an ED50 (i.v.) of 0.72µg/kg. (Tropisetron: 3µg/kg).

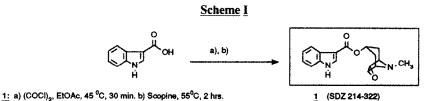
Our design of 5-HT₄ agonists with favorably reduced degree of 5-HT₃ antagonism was first based on the class of prokinetic benzamides. The latter contain the 4-amino-5-chloro-2-methoxy benzamide moiety common to drugs such as Metoclopramide (2), Zacopride (3), Cisapride (4) and Renzapride (5). A particular characteristic of these structures is the possible intramolecular hydrogen bond between amide and methoxy group, which holds the carbonyl group in plane, forming a "virtual ring":

^{*)} Current address: Sandoz Research Institute Berne, CH-3007, Switzerland.

462 E. Blum et al.

In search of bioisosters for prokinetic benzamides, the "virtual ring" was replaced by a six-membered lactam and a pyrone, leading to the potential Metoclopramide-substitutes $\underline{6}$ and $\underline{7}$ [10].

5-HT₄ agonism (Table II) of $\underline{6}$ was demonstrated in the electrical field stimulated guinea pig ileum (FSGPI) [11], where it proved to be weaker than Metoclopramide. Compound $\underline{7}$ fulfilled the conformational, but probably not the electrostatic requirements of a Metoclopramide-mimetic and was devoid of 5-HT₄ agonistic activity. Oxazole $\underline{8}$ was slightly more potent than Metoclopramide in its FSGPI-effects and proved to be a 5-HT₄ antagonist, similar to the structurally related 5-HT₄ antagonist \underline{SDZ} 205-557 [15].

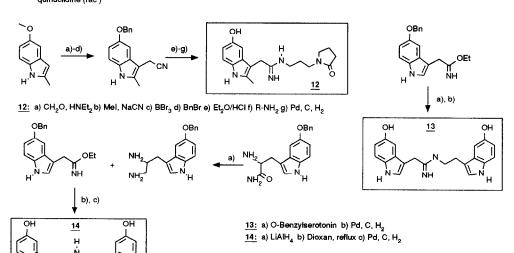

Amides $\underline{9}$, $\underline{10}$, and $\underline{11}$ - all capable of forming an intramolecular hydrogen bond - were identified as potent benzamide-mimetics and 5-HT₄ agonists. None of the compounds was selective for the 5-HT₄ receptor; all retained 5-HT₃ antagonism.

Due to the difficulty to separate 5-HT₃ antagonistic properties from 5-HT₄ agonism within the class of benzamides and related bioisosteres, we focused our design of selective 5-HT₄ agonists on 5-HT itself. Some simple analogs of 5-HT were prepared and tested for 5-HT₄ agonism in the FSGPI. Amidine derivatives 12 and 13 were identified as potent 5-HT₄ agonists lacking 5-HT₃ antagonism. Although in vitro equipotent with Zacopride, 13 showed only very modest oral activity as a gastrointestinal prokinetic drug. Incorporation of the metabolically labile amidine functionality into a five-membered ring in 14 erased 5-HT₄ agonism.

The tetralin-, quinoline- and 2-cyano-analogs of 5-HT - $\underline{15}$, $\underline{16}$ and $\underline{17}$ - were devoid of 5-HT₄ agonistic effects up to 10^{-4} M, but instead were agonists at 5-HT₃ receptors, comparable to 2-Me-5-HT, phenylbiguanide and 5-Methoxytryptamine, the few representatives of this class.

 $5-HT_3$ agonistic activity was discovered for $\underline{18}$, which is structurally related to Tropisetron and Ondansetron, considering the distance of its basic nitrogen from the aromatic nucleus.

In summary, our search for selective 5-HT₃ antagonists and 5-HT₄ agonists has led to the discovery of one highly potent 5-HT₃ antagonist and analogue of Tropisetron with an increased potency to inhibit cisplatin-induced emesis in ferrets (1). A series of potential gastrointestinal prokinetic benzamide bioisosteres are described (8-11) together with novel 5-HT₃ agonists (15-18). Amidines 12-14 display affinity to the new 5-HT₄ receptor and contribute to the elucidation of its structure-activity relationships [16].


6: a) 2N NaOH, EtOH b) CuBr, NaOH, Ethyl acetoacetate c) 2N NaOH, EtOH d) Ac₂O e) BnNH(CH₂)₂NEt₂ f) EtOH, HCl g) Pd, C, H₂ h) B₂H₆ i) Pd, C, H₂, HOAc j) To, reflux k) NBS i) NCS m) Pd, C, H₂, EtOH

464 E. Blum et al.

7: a) NaH, Mel b) Et2N(CH₂)₃CO₂Et, LDA, -78^oC to r t. c) KOH, EtOH, reflux d) BBr₃ e) TFAA f) Dimethylformamide dimethyl acetal, toluene reflux g) 2N HCl reflux

11a: a) Br₂, AcOH b) NaOH c) CuCN, N-Methylpyrrolidon d) KOH, HO(CH₂)₂OH e) DCC, N-Hydroxysuccinimide f) 3-Aminoquinuclidine (rac)

<u>11a</u>

15: a) LDA, MeCN b) LIARH, c) Pd, C, H, d) BBr,

OMe OMe OMe OMe OMe
$$a, b$$
 $N = CO_2H$ c, d $N = OBn$ e, f $N = NH_2$

16: a) Chlorathydrate b) KOH c) Pd, C, H₂ d) (PhO)₂P(O)N₃, BnOH e) Pd, C, H₂ f) BBr₃

17: a) BOC2O b) CISO2CNO, DMF c) TFA d) BBra

18: a) (EtO)2P(O)CH2CO2Et, NaH b) Na, NH3 c) Pd, C, H2 d) Benzyl chloroformate e) NaOH f) SOCI2 g) 5-Methoxyindole

References and Notes

- [1] Bradley, P.B.; Engel, G; Feniuk, W; Fozard, J.R.; Humphrey, P.P.A.; Middlemiss, D.N.; Mylccharanc.
- E.J.; Richardson, B.P.; Saxena, P.R. Neuropharmacology 1986, 25, 563.
- [2] Clarke, D.E.; Craig, D.A.; Fozard, J.R. Trends Pharmacol.Sci. 1989, 10, 385.
 [3a] Dumuis, A.; Sebben, M.; Bockaert, J. Naunyn-Schmiedeberg's Arch. Pharmacol. 1989, 340, 403.
- [3b] Elswood, C.J.; Bunce, K.T. and Humphrey, P.P.A. Eur.J.Pharmacol. 1991, 196, 149.
- [4] Craig, D.A.; Clarke, D.E. Br.J.Pharmacol. 1991, 102, 563.
- [5] Saxena, P.R.; Villalon, C.M. Trends Pharmacol.Sci. 1991, 12,

- [6] Fozard, J.R. Naunyn-Schmiedeberg's Arch. Pharmacol. 1984, 326, 36.
 [7] Butler, A.; Hill, J.M.; Ireland, S.J.; Jordon, C.C.; Nelson, D.R. and Tyers, M.B. Eur.J.Pharmacol. 1988, 159, 113.
- [8] Fake, C.S.; King, F.D. and Sanger, G.J. Br.J. Pharmacol. 1987, 91, 335P.
- [9] Revesz, L. DE 3827253 A1. Sandoz-Patent-G.m.b.H.
- [10] Synthesis of the novel compounds 6-18 is described in scheme I.
- [11] Craig, D.A. and Clarke, D.E. J. Pharm. Exp. Ther. 1990, 252, 1378.
- [12] Neto, F.R. Eur. J. Pharmacol. 1978, 49, 351.
 [13] Fozard, J.R.; Mobarok Ali, A.T.M. Naunyn-Schmiedeberg's Arch. Pharmacol. 1978, 301, 223.
- [14] Buchheit, K.H.; Engel, G.; Mutschler, E.; Richardson, B.P. Naunyn-Schmiedeberg's Arch.Pharmacol. 1985, 329, 26.
- [15] Buchheit K.H.; Gamse R. and Pfannkuche H.J. Eur.J.Pharmacol. 1991, 200, 373.
- [16] Turconi M., Schiantarelli P.; Borsini F.; Rizzi C.A., Ladinsky H. and Donetti A. Drugs of the Future 1991, 16(11), 1011.
- [17] Richardson, B.P.; Engel, G.; Donatsch, P.; Stadler, P.A. Nature 1985, 316, 126-31.
- [18] Hoyer, D. and Neijt, H.C. Mol. Pharmacol. 1988, 33, 303.

<u>Table</u> <u>I</u>	Effects at 5-HT ₃ receptors							
	Antagonism ¹⁾			Agonism 1)			Binding 2)	
	RVN pA ₂	RH pA ₂	GPI pA ₂	RVN pD ₂	RH pD ₂	GPI PD2	N1E cells	
Tropisetron Ondansetron Granisetron 1 2 3 4 5 9a 9b 10a 10b 11a 15 16 17 18	10.2 9.2 9.9 10.6 7.3 10.1 6.5 8.5 9.0 8.9 7.7	10.6 10.1 10.1 11.0 7.1 7.1 8.6	7.9 7.1 7.8 8.8 5.2 8.5 7.2 7.6 7.9 6.7 7.7 6.8 7.2	6.0 5.8 7.2 7.0	5.7 4.0 6.0	5.2 4.5 5.4	9.1 7.7 8.9 9.2 8.5	
2-Me-5-HT			0.0	5.6	5.5	5.1		

1) Effects are measured in the isolated rabbit vagus nerve (RVN) [12], isolated perfused rabbit heart (RH) [13] and in the isolated guinea pig ileum (GPI) [14] longitudinal muscle preparation
2) Membranes from N1E-115 cells were used and the experiments were carried out with [3H]-Tropisetron (ICS 205-930) as the radiologand [17]

able II	Effects at 5-HT ₄ receptors					
	Antagonism	Agonism				
	NSGPI ²⁾	FSGPI ¹⁾	NSGPI ²⁾			
Tropisetron	5.7 3)					
Ondansetron		5.1				
1	6.3	0				
2		5.5				
3		6.2	5.9			
4		6.0				
5		7.1	5.7			
6		5.2	5.1			
7		0				
8	6.1	6.0				
9a		7.2	6.0			
9b		7.5	7.1			
10a		5.8	5.5			
10b		7.2	6.0			
11a		6.6	7.1			
12		5.8				
1 2 3 4 5 6 7 8 9 9 9 10 10 11 12 13 14		6.3				
14		0				
215-557	7.0					
5-HT		7.0	7.9			

FSGPI (low frequency field stimulation of guinea-pig ileum) is a suitable model for the pharmaco-logical analysis of 5-HT receptor [11]
 NSGPI (non-electrically stimulated guinea-pig ileum) is less sensitive for 5-HT₄ agonists than FSGPI
 Tropisetron behaves as a non-competitive 5-HT₄ antagonist; pD2'=5.7